Analysis of Bus Hierarchies for Multiprocessors *

Donald C. Winsor and Trevor N. Mudge

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan

don@eecs.umich.edu
tnm@eecs.umich.edu

Abstract: In order to build large shared-memory multiprocessor
systems that take advantage of current hardware-enforced cache coherence
protocols, an interconnection network is needed that acts logically as a
single bus while avoiding the electrical loading problems of a large bus.
This paper develops models of bus delay and bus throughput to aid in
optimizing the design of such a network. These models are used to
derive a method for determining the maximum number of processors
that can be supported by each of several bus organizations including
conventional single-level buses, two-level bus hierarchies, and binary
tree interconnections. An example based on a TTL bus is presented to
illustrate the methods and to show that shared ory multiprocessors
with several dozen processors are feasible using a simple two-level bus
hierarchy.

1 Introduction

Although there have been many proposals, some very complicated, for
multiprocessor architectures, one of the most popular is also the simplest.
It consists of a single shared bus that connects multiple processors 10 a
shared main memory (Figure 1). Represcntative examples include the
Encore Multimax [1] and the Sequent Balance series [2]. Its popularity is

detailed discussion of cache coherence protocols for snooping caches can
be found in [3]).

Until recently, the high cost of cache memories limited them to
relatively small sizes. For example, the Sequent Balance multiprocessor
system uses an 8 K-byte cache for each processor [2]. These small
caches have high miss ratios, so a significant fraction of memory
requests require service from the bus. The resulting high bus traffic
limits these systems to a small number of processors. Advances in
memory technology have substantially increased the maximum practical
cache memory size. For example, the Berkeley SPUR multiprocessor
workstation uses a 128 K-byte cache for each processor [4], and caches
as large as 1024 K-bytes are considered for the Encore Ultramax in [5).
Using large caches, it is possible to reduce bus traffic due to individual
processors, allowing systems with greater numbers of processors to be
built. As the number of processors is increased, a point is reached
where capacitive loading, driver current limitations, and transmission line
propagation delays become the dominant factors limiting the maximum
number of processors.

Interconnections such as multistage networks [6] do not have the
bus loading problem of a single bus; however, the bus oriented cache
coherence protocols will not work with them. To build very large systems
that can benefit from the advantages of the bus-oriented cache coherence
protocols, it is necessary to construct an interconnection network that
preserves the logical structure of a single bus while avoiding the electrical

probably due to the fact that it is an evolutionary step from the famili
uniprocessor, and yet it can offer a performance increase for typical
multiprogramming workloads that grows linearly with the number of
processors, at least for the first dozen or so. The architecture of Figure 1
can also be used in a multitasking environment where single jobs can take
control of all the processors and execute in parallel. This is a mode of
operation which is infrequently used at present, so we will confine our
discussion to a multiprogramming environment in which computational
jobs form a single queue for the next available processor.

The maximum performance of these shared-memory systems is
extremely sensitive to both bus bandwidth and memory access time.
Since cache memories significantly improve both the bandwidth and the
average access time, they are an essential component of this class of
multiprocessor. When using a private cache memory for each processor
(as shown in Figure 1), it is necessary to ensure that all valid copies
of a given cache line are the same. (A cache line is the unit of data
transter between cache and main memory.) This requirement is called the
multicache consistency or cache coherence problem. The most promising
solutions to hardware-enforced cache coherence require that all processors
share a common main memory bus (or the logical equivalent). Each
cache monitors all bus activity to identify references to its lines by other
caches in the system. This monitoring is called snooping on the bus.
It has the advantage that coherence is managed by the hardware in a
decentralized fashion, avoiding the bottleneck of a central directory. A

“This work was supported in part by DoD grant number MDA904-87-C-4136

CH2545-2/88/0000/0100$01.00 © 1988 IEEE

pl ation problems associated with physically attaching all of the
processors directly to a single bus.

There are several practical ways to construct a network that logically
acts as a shared bus connecting a large number of processors. Figure 2
shows an implementation that uses a two-level hierarchy of buses. If a
single bus can support N processors with delay A, then this arrangement
will handle N2 processors with delay 3A. Figure 3 shows another
implementation consisting of a binary tree structure of transceivers. This
arrangement can connect N processors (where N is a power of 2)
using 2N -2 transceivers. The maximum delay through this network is
2log, N times the delay of a single transceiver. Many other arrangements
are possible. In order to select the optimal bus organization for a
given implementation technology and a given number of processors,
models of bus delay and bus interference are needed. In this paper, we
construct these models and use them to derive the optimal organizations
and sizes for single buses, two-level bus hierarchies, and binary tree
interconnections. Simple relationships are developed that express the
largest useful systems that can be constructed with a given processor,
cache, and bus organization. We present an example based on a TTL
bus 10 show that shared-memory multiprocessors with several dozen
processors are feasible using a simple two-level bus hierarchy. To
conclude our discussion of buses, a few remarks are made on the
impontance of good electrical design to system performance.

mailto:don@eecs.umich.edu
mailto:tnm@eecs.umich.edu

P = processor X = bus transceiver
C = cache memory

el {r][r][¢]
x| | x

] [x] [x]

= main memory

M
el [e][p] (e] [¢]
][] [e] [e] [c]
X D D DX] snareg

Figure 1: Single bus shared-memory multiprocessor.
n Level
one buses

e

»] [7]

[)Tl(] . |§] Level
two bus

Figure 2: Interconnection using a two-level bus hierarchy.

M

v Figure 3: Interconnection using a binary tree.

101

2 Bus model

We define system throughput as the ratio of the total memory traffic in the
system to the memory traffic of a single processor with a zero delay bus.
This a useful measure of system performance since it is proportional to the
total rate at which useful computations may be performed by the system
for a given processor and cache design. In this section we develop a model
for system throughput, T, as a function of the number of processors N,
the mean time between shared-memory requests from a processor t,., and
the bus cycle time ¢,.

2.1

In general, the delay associated with a bus depends on the number of
devices connected to it. In this section, we will use N to represent
the number of devices connected to the bus under discussion. Based
on their dependence on N, the delays in a bus can be classified into
four general types: constant, logarithmic, linear, and quadratic. Constant
delays are independent of N. The intemal propagation delay of a bus
transceiver is an example of constant delay. Logarithmic delays are
proportional to log, N. The delay through a binary tree interconnection
network as shown in Figure 3 is an example of logarithmic delay. The
delay of an optimized MOS driver driving a capacitive load where the
total capacitance is proportional to N is another example of logarithmic
delay (7). Linear delays are proportional to N. The transmission line
delay of a bus whose length is proportional to N is an example of linear
delay. Another example is the delay of an RC circuit in which R (bus
driver internal resistance) is fixed and C (bus receiver capacitance) is
proportional to N. Finally, quadratic delays are proportional to N2. The
delay of an interconnection network on a VLSI or WSI chip in which
both the resistance and the capacitance of the wiring are appreciable is
an example of quadratic delay [8].

The total delay of a bus, A, can be modeled as the sum of these four
components (some of which may be zero or negligible), i.e.,

Delay model

A = keons + kiog10gN + kinN + kqua N2

The minimum bus cycle time is limited by the bus delay. It is typically
equal to the bus delay for a bus protocol that requires no acknowledgment,
and it is equal to twice the bus delay for a protocol that does require an
acknowledgment. For the remainder of this paper, we will assume that no
acknowledgment is required. Thus, the bus cycle time ¢, can be expressed
as,

te = kconst + kioglog;N + binN + kguaaN? (1

22

To accurately model the bus performance when muitiple processors share
a single bus, the issue of bus interference must be considered. This occurs
if two or more processors attempt to access the bus at the same time-—only
one can be serviced while the others must wait. Interference increases the
mean time for servicing a memory request over the bus, and it causes the
bus utilization for an N processor system to be less than N times that of
a single processor system.

If the requests from different processors are independent, as would
likely be the case when they are running separate processes in a
multiprogramming system, then a Markov chain model of bus interference
can be constructed [9,10,11,12]). This model may be used to estimate
the effective memory access time and the bus utilization. In the model,
states Ilo, ..., [Ix-) correspond to the number of processors blocked (it
is not possible to have all N processors blocked; one must be accessing
memory). Let p be the probability that a processor requests a memory
access in a bus cycle, and let g be 1 — p by definition. It is assumed that
p is the same for all processors and that requests are independent. Let
a, ; be the probability that j processors generate new memory requesis
given that i processors are blocked. Since processors that are blocked

Interference model

102

cannot generate new requests, this probability is given by the binomial

distribution:
(N - i) pigW-9-i
o = 7

iy

SN

0 ji>N-i

The state transition probabilities in the Markov chain model may be easily
obtained from the o values. It is then possible to solve for the state
probabilities (), although it does not seem possible to give a closed form
representation of the general solution. To compute the state probabilities
wi, define w; = =;/m. This results in a triangular system of linear
equations. Thus, it is easier to solve for the w; values than to solve for
the =; values directly. We will skip some steps for brevity, but it can be
shown that,

we = 1
w = 1—_(%::&)- = qTI:,—(NP’fq)
and, for2 < i< N,
i-1

N} N-1 N~y

—
érg=iw.7ro=7rogwi=l
i=0 =0 =0

therefore,
1

Nt
> w
=0

The mean queue length L (the mean number of blocked processors) is
given by,

o =

N-1

E i,

=0

L =

The mean number of bus cycles needed to service a memory request, s,
is one more than the mean queue length, therefore,

N-1
s = 1+Zi7r‘
i=0

We define t,, to be the mean time interval between the memory requests
from a processor. This ¢ of bus queuing and tr ion time,
processor compute time, and memory access time. Let t, be the bus time,
and ¢, be the processor and memory time, so t,, = t, +,. Since ¢, is
the bus cycle time, and a memory request takes s cycles to service, the
mean time required for the bus to service a memory request, ¢, is given
by, t, = st.. The memory request probability p is equal to the ratio of
the bus cycle time to the memory request time:

)

te 2
p=-< =
[ty+t,

Substituting st,. for t, yields,

Let r be given by,
3)

N T p s
1 ([0.98 | 0.0196 | 1.00
2 it 1.94 | 0.0291 | 1.00
3| 2.88 | 0.0385 [1.00
4] 3.79 | 0.0476 | 1.02
5 || 467 | 0.0565 | 1.04
6 || 5.49 | 0.0650 | 1.09
7 || 6.23 | 0.0731 | 1.18
8 || 6.84 | 0.0803 | 1.34
9| 7.25 | 0.0863 | 1.59
10 || 7.42 | 0.0904 | 1.97
11 || 7.37 | 0.0927 | 2.46
12 |f 7.16 | 0.0933 | 3.03
13 || 6.85 | 0.0927 | 3.65
14 || 6.51 | 0.0912 | 4.30
15 i 6.16 | 0.0893 [4.95
16 || 5.84 | 0.0871 | 5.60
17 |[5.53 | 0.0847 | 6.25
18 [f 5.25 | 0.0823 | 6.88
19 || 4.99 | 0.0799 | 7.51
20 || 4.76 | 0.0776 | 8.12

Table 1: T, p, and s as a function of N (ri. = 0.01).

then,
1

s+r
The bus utilization is defined as the fraction of bus cycles thal are used
to service a memory request. This will be a number between zero and
one. Since the bus is in use unless the system is in state zero and no
Pprocessors generate new requests, the bus utilization U is given by,

p= “)

U = 1-maop = | - mg"

The system throughput T was defined previously as the ratio of the
memory traffic for the multiprocessor system to the memory traffic for
a single processor with a zero delay bus. This can be calculated from
t., t,, and U. The memory traffic for a single processor with &, = 0 is
1/t,, and the memory traffic for the multiprocessor system is U/t,., thus
T =Ut, /t.. Substituting from (3) gives,

T = (l—‘lroqN)r)
Solutions of the simultaneous equations (2) and (4) may be obtained for
given values of N and r. Equation (5) may then be used to obtain T as

a function of N and »r.

3 Maximum throughput for a linear bus

In this section, we consider a bus in which the linear component of the
bus delay, given by ki, is large compared with the other components of
bus delay. We assume that the bus has N + 1 connections, N processors
and a single memory controller. The bus cycle time t. for this bus is
kiin(N + 1). To obtain an expression for p, we define the ratio:

Fiin

Tin =
in i

Since ki, and ¢, are both independent of N, ry, is also independent of
N. Substituting .. = kiin(N +1) = £, (N +1) into (3), (4), and (5) gives:
_ 1

- mMin(N+ 1)

1
(©6)

A
st v

103

N || maximum ry, T p s
2 | 0.192 1.11 | 0.346 L15
4 | 0.0536 2.64 | 0.196 1.38
8 |l 0.0146 592 { 0.107 1.73
16 || 0.00384 12.82 | 0.0569 2.28
18 || 0.00305 14.58 | 0.0509 2.39
32 il 0.000985 27.18 | 0.0295 3.09
64 || 0.000249 56.79 | 0.0151 4.28
72 || 0.000197 6429 | 0.0135 4.53
128 | 0.0000622 117.35 | 0.00766 6.00
256 || 0.0000155 240.44 | 0.00386 8.45
288 || 0.0000123 271.43 | 0.00343 8.96
512 || 0.00000387 489.47 { 0.00194 | 11.94
1024 [0.000000964 991.58 | 0.000972 | 16.88
1152 [0.000000761 | 1117.53 | 0.000864 | 17.90

Table 2: Maximum value of ry, as a function of N for a linear bus.

_ 1= zoq™
Min(N +1)

By solving the simultaneous equations (2), (6), and (7), the throughput
T may be obtained as a function of the number of processors N and the
Tato 7j,.

For a given value of nin, if the total system throughput is plotted as
a function of the number of processors, it will be found to increase up
to a certain number of processors and then decrease again when the bus
becomes overloaded. This occurs because once the bus utilization U gets
close to one, further increases in the number of processors N will not
significantly increase [/, but the bus cycle time ¢, will increase due to
increased bus loading. Thus, the throughput T = Ut, /t. will decrease.

The effects of bus loading are illustrated in Table 1 where throughput
is shown as a function of N for a particular r;,. It can be seen that the
throughput increases as NV increases until N = 10 and then it decreases
again.

Using the results of the bus interference model described above, a
solution was obtained for the maximum number of useful processors as
a function of ri;,. Since the number of processors is constrained to be an
integer, the results are presented to show the maximum value of ry, for
which it is reasonable to use N processors. We define the maximum ry;,
value to be that value of r, at which the throughput of a system with
N +1 processors is equal to that of a system with N processors. Table 2
shows this for a range of values of N. The request probability p, the
mean number of bus cycles for service s, and the throughput 7" for these
values of N and ry;, are also shown. From Table 2, it can be shown that
for large N, the following approximation holds,

O]

maximum m;, &~ N2

Since ry;, is specified by the processor, cache, and bus characteristics, this
relationship gives an approximate idea of the largest useful system that
can be constructed with these components.

3.1

In this section, we will illustrate the linear bus case with a system using
standard TTL components for its bus transceivers. First, we show that a
TTL bus is, in fact, a linear bus.

The delay of a TTL bus consists primarily of the time required for the
driver to charge the transceiver capacitances. The total capacitance which
must be charged by the driver is proportional to the number of transceivers
connected to the bus. Since the driver acts as a nearly constant current
source, the delay is nearly proportional to the number of transceivers
connected to the bus. Thus, the ki, term will be dominant in the bus
delay model.

TTL bus example

10 20 30 40 50 60 70 80 % 100
100 + + + + t + + 4 —% 100
...
90 K 1 g0
..“

80 Delay 1 80
. N | (ns)
. 25| 261
- 26| 273

70 R4 27| 284 | 1 70
o 28| 296
- 29| 307
. 30| 312

60 o 31| 323| 160
B 2| 335
. 34| 357
Delay - 36| 374

@s) 0 o’ 8| 397| 150
'Y 40 419
.." 42 | 436
. 44| 459

40 1 40
o 46| 481
. 48| 498
o 52| 543

30 K s6| 583| 1 30
o* 60| 623
. 64| 662
68! 707

20 72| 7146 $ 20
76| 7186
80| 83.1
84! 871

10 88| 910 T 10
92| 99
9% | 994

0 -+ + + + + t —— + -+ 0

10 20 30 40 50 60 70 80 %0 100

Number of processors N

Figure 4: Bus delay as calculated from ODEPACK simulations.

An estimate of the bus delay for a large bus may be made as follows.
We assume a 64ma FAST Schottky TTL bus transceiver. Typical
characteristics for this component are 12pf output capacitance, 64ma
driver current, and 2 volt logic swing [13]. Assuming 1 pf per connection
of additional capacitance from the bus wiring gives a total of 13 pf per
connection. With terminations of 64 ohms to 2.5 volts, and a logic low
level of 0.6 volis, approximately 30ma of driver current flows through
the terminations, leaving 34 ma to charge the capacitances. From these
figures, we get,

b = A L 1ppeV)
=N T T(34ma)

To obtain a more precise estimate of the delay of a TTL bus, a
circuit model was constructed in which the driving transceiver was
modeled as' a nonlinear current source in parallel with a capacitor, and
the receiving transceivers were modeled as nonlinear resistors in parallel
with capacitors. The bus was modeled with lumped inductances and
capacitances. Using this model, the bus was represented by a system
of nonlinear ordinary differential equations. Parameters for this model

= 0.76ns.

were obtained from [13). The ODEPACK (Ordinary Differential Equation
Package) software package was used to obtain a solution to this system,
from which the bus delay was determined. The results for buses with
25 to 96 connections on them are shown in Figure 4. For smaller N,
effects due to transmission line reflections dominate, and the delay model
tends to be somewhat unpredictable. For larger N, the computation time
required for the simulations becomes prohibitive.

From Figure 4, it can be seen that for large N (N > 25), the delay is
essentially linear in the number of bus connections, with kj, ~ 1.04 ns.
Thus, a linear bus model may be used for a TTL bus. The value for
kiin from Figure 4 is slightly larger than the value estimated from the
transceiver capacitance and drive current and it represents the typical
time to reach correct logic values everywhere on the bus. A practical
implementation must use a time significantly greater than this figure to
allow for worst-case variations, clock skew, arbitration time, etc. To
account for these in our examples, we consider existing TTL bus designs.
Several TTL based buses are described in [14]. The maximum bandwidth
claimed for any of these buses is 57 megabytes per second with 21 bus

slots. This bus is four bytes wide, so we have

(4 bytes)

= 57 x 10° bytes/se0@) - 4ms

kiin ®3)

‘We will use this figure for ki, for our examples that follow, and assume
a linear model as Figure 4 would suggest. Consider a system with the
following characteristics:

s 16.67 MHz Motorola MC68020 processor
e 64 K-byte cache
o 8 byte bus data path
o 16 byte cache line size
o 3 bus cycles needed to feich data for a cache miss
o 3 bus cycles needed to write a dirty line back from the cache
e 260 ns main memory access time
e 7.0ns bus transceiver propagation delay
The following 16.67 MHz 68020 performance figures are from [15]}:
e 2.52 million instructions per second
e 1.201 memory references per instruction
® 52.1% of memory references are data references
The following cache performance figures are from [16] and [17]:
o Cache miss ratio = 0.030
e Half of data misses require writing a dirty line back from the cache
With this data, an estimate may be obtained for ¢,:

. EE T + 260 X 10775+ (2)(7.0 x 10-%5)
v 3 + (3X0.521X0.5)

= 298[15

The first term in the numerator gives the mean processor compute time
between references (this is the reciprocal of i ions per d x
references per instruction x miss ratio), the second term is the fixed
memory access time, and the last term is the fixed round-trip bus
transceiver delay. The denominator is the mean number of bus cycles
for a single memory reference and is the sum of the number of bus cycles
needed to service a cache miss (three) and the average number of cycles
to write back dirty lines. Three bus cycles are needed to fetch data or
write a dirty line because one is required to issue the address and two are
needed to transfer the data. From the figure obtained eardier for ky, in
(8), we get rjin = ki /t, = 0.00112. With this value of ri,, 2 maximum
throughput of 25.4 can be achieved using 30 processors.

4 Optimization of a two-level bus hierarchy

‘We now consider a bus that is impl d with two physical levels, as
in the design of Figure 2. Using a delay model as described previously to
model each level, it is possible to select the ber of i i
that should be made at each level in order to minimize the total delay.
For example, to build a 256 processor system, the following are plausible
approaches: give each processor its own interface to a 256 slot bus,
connect pairs of processors to a 128 slot bus, or connect groups of 16
processors to a 16 slot bus. In this section, a method will be developed
for selecting the org with the mini delay.

If we let N be the total number of devices connected through both
levels and B be the number of devices connected together at the first
level, then N/B devices must be connected together at the second level.
The optimization problem is to choose B to minimize the total delay, A,
for a given N. The longest path in this hierarchy is from a processor
through its level one bus, down through the level two bus, and back up

105

Level Level Level Level
one one one one
constant logarithmic linear quadratic
Level Constant delay;
two 1 1 1
B doesn’t matter
constant
1if
Level Pho > Hogs [Fo
two N Em T
I Nif " -y
logarithmic g, < Koy,
Level
twi N N NiE | of N e
0 2kiog; 2k, Ak geas,
linear
Level
Kywty 3/ p2 ke [
two . N Nia N Nz
quadratic

Table 3: Value of B for minimum delay in a two-level bus hierarchy.

to a different level one bus (see Figure 2). It is necessary to include this
last defay to allow the processors on that bus to perform their snooping
operations. Thus, the delay of the two-level hierarchy is twice the level
one delay plus the level two delay, ie.,

A =20 + Ay
where,
Ay = keonsy + kiog, 1088 + kyn, B + kquaa, B

and,

2
N N N
Az = keonsy + kiog, 108, (E) + kiin, (E) + kqtudz(i)
therefore,

A = 2keonm, + 2kiog, 108, B + 2kiin, B + 2kquaa, B +

2
keons, + kiog, 1082 () + ki (5) + kaue,(5)

Taking the derivative of A with respect to B and setting the result to zero
gives,

4kquaa, B* + 2k B + (2hiog, — kog)B* — kioy NB — 2kquaa, N? = 0

Although a closed form solution of this quartic equation is possible, it is
complex and gives little additional insight into the problem. However,
it is useful to consider the cases in which a particular type of delay is
dominant, In these cases, simpler approximations are possible. The value
of B to minimize the total delay is shown in Table 3 for all combinations
of level one and level two delays. The situation in which the dominant
delays in level one and level two are different may occur when the levels
are implemented in different technologies. For example, one level may
be implemented entirely within a single VLSI chip, while another level
may consist of connections between the chips.

4.1

Using Table 3, we can determine the maximum number of processors
when the two-level bus hierarchy of Figure 2 is used instead of a single

Maximum throughput for a two-level bus hierarchy

N || maximum 7y, T 14 s
8 || 0.0130 5.66 | 0.113 1.85
18 || 0.00418 13.97 | 0.0537 2.68
32 |l 0.00182 26.32 | 0.0308 3.50
72 |[0.000551 63.05 | 0.0138 5.13
128 |[0.000235 115.79 | 0.00780 6.76
288 (| 0.0000705 269.28 | 0.00347 | 10.02
512 | 0.0000299 486.78 | 0.00195 } 13.27
1152 (| 0.00000893 1113.78 | 0.000868 | 19.77

Table 4: Maximum value of n;, as a function of N for a two-level bus
hierarchy.

bus. We will assume the electrical characteristics of the two levels
are identical and linear. Then, the bus cycle time at each level is
approximately k;;, times the number of devices (processors or clusters of
processors) connected at that level. Furthermore, the optimal organization
for N processors is to connect. them as 2N clusters with \/N/2
processors in each cluster. The level one buses will have /N /2 processor
connections and one connection to the level two bus for a total of
/N72 + 1 connections. Similarly, the level two bus will have vZN
connections to the level one buses and one connection to the main memory
for a total of v/2N +1 connections. The bus cycle time is twice the level
one delay plus the level two delay, 5o t. = ky,(v/8N + 3). Substituting
t. = kun(VBN +3) = t, min(v/8N +3) into (3), (4), and (5) gives:

1

) Tlin (\/S_E+3)

1
A
* Tiis (\/ﬁu

(&)

e N
T = _1-mg” 10)

Tlin (\/8—1V+3)

By solving the simultaneous equations (2), (9), and (10), the throughput,
T, may be obtained as a function of the number of processors N and the
ratio ry,. As was done for a single level bus, the maximum value of ry,
was determined for each value of N. Table 4 shows these results, along
with the request probability p, the mean number of bus cycles for service
s, and the throughput T for these values of N and riin.

It can be seen that for large N, the following approximation may be
used for the maximum value of ry;,:

2
maximum r;, =~ (2N)73

As befo.e, this relation gives a simple approximation for the largest
useful system that may be constructed with a given processor, cache,
and two-level bus.

For moderate to large N, the results for throughput are much better
than can be obtained with a single level. For small N, however, the
improvement is not significant, and for N < 12, throughput is actually
worse for a two-level bus hierarchy than for a single bus. With the value
of r;, from the previous example, r;, = 0.00112, a maximum throughput
of 37.8 can be achieved using 50 p ors. This rep a 49%
improvement in maximum throughput over a single level bus.

5 Maximum throughput using a binary tree
interconnection network
Finally, in this section, we determine the maximum number of processors

when the binary tree interconnection network shown in Figure 3 is used.
In this case, the logarithmic component of the bus delay, given by kiog, is

N || maximum 7jo, T P s
2 [0.307 1.46 | 0.231 1.06
4] 0.111 2.89 | 0.173 1.28
8 | 0.0401 6.18 | 0.101 1.62
16 |} 0.0150 13.34 | 0.0534 2.03
32 | 0.00586 28.42 | 0.0273 2.50
64 || 0.00240 59.40 | 0.0138 3.01
128 || 0.00102 122.31 | 0.00698 | 3.57
256 {i 0.000446 249.17 | 0.00352 | 4.15
512 | 0.000198 504.01 | 0.00177 | 4.73
1024 || 0.0000896 1014.86 | 0.000892 | 5.31

Table 5: Maximum value of ri; as a function of N for a binary tree
interconnection.

large compared with the other components of bus delay. For this system
t. = kioglog, N. Defining riog = kiog/t, gives:

te = trnoglog,N

1

- Tiog logy N
1
pE 1 a1
¥ o on N
= _l.__ﬂi 12)
Tlog lngN

The solution for this case is shown in Table 5, and the approximation for
large N is: |
Nlog:N

We now consider our example system with ¢, = 2.98 us using this
bus structure. The delay constant ki, is equal to twice the propagation
delay of the transceivers used, which is approximately 7.0ns for our
TTL-based example. Thus, riog = kiog /¢, = 0.00470 in this case. For this
value of r0g, a maximum throughput of 35.4 can be obtained by using
64 processors. This is a 39% improvement in maximum throughput over
the single level bus, but it is poorer than the two-level bus hierarchy.

maximum rj,, =

6 Discussion and concluding remarks

We have presented a model of bus delay and shown how it may be used
to analyze three bus organizations assuming a TTL impl ion. In
our examples the two-level organization yiclded the greatest throughput.
This is a consequence of the technology chosen for the examples and may
not, in general, be the case.

The TTL technology we have used to illustrate our examples is adequate
but not the best choice for implementing a bus system (we used it
because its parameters were easily obtained). In particular, the bus delay
component, ki,, may be decreased with better bus transceiver technology.
A new transceiver technology, BTL (backplane transceiver logic), has
significantly better performance than TTL for bus applications [18). It
achieves this by having a lower capacitance and a smaller swing between
logic levels. Good electrical design of the bus is as important as clever
cacheing strategies. This can be appreciated if we note that halving the
bus capacitance allows a /2 (i.e. 41%) increase in N and T for the
single-level case, and va (i.e. 59%) for the two-level case.

Finally, if better transceivers and larger caches are not sufficient for
achieving the desired throughput, then techniques for distributing the
processor to memory traffic over several buses such as those described in
{19] and [20] may be used. Combinations of these techniques should
allow shared memory systems with several hundred processors to be
constructed in the near future.

References
(1] Multimax Technical S y, E Comp Corp
May, 1985,
[2] Balance Technical S ¥, Seq Comp Systems, Inc.,

November 19, 1986.

[3] James Archibald and Jean-Loup Baer, “Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model”, ACM Trans-
actions on Computer Systems, volume 4, number 4, November, 1986,
pages 273-298.

[4] Mark Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams,
B. K. Bose, Garth Gibson, Paul Hansen, Jon Keller, Shing Kong,
Corinna Lee, D: Lee, Joan Pendl Scott Ritchie, David Wood,
Ben Zom, Paul Hilfinger, Dave Hodges, Randy Katz, John Qusterhout,
and Dave P “Design D in SPUR”, Computer,
November, 1986, pages 8-22.

[5] Andrew W, Wilson Jr., “Hierarchical Cache / Bus Architecture for
Shared Memory Multiprocessors”, In The I4th Annual International
Symposium on Computer Architecture Conference Proceedings,
June 2-5, 1987, pages 244-252.

[6] H. J. Siegel, Interconnection Networks for Large-Scale Parallel
Processing: Theory and Case Studies, Lexington Books, Lexington,
Massachusetts, 1985.

[7) Carver Mead and Lynn Conway, Introduction to VLSI Systems,
Addison-Wesley, 1980, pages 12-14.

[8] Abhiram G. Ranade and S. Lennart Johnsson, “The Communication
Efficiency of Meshes, Boolean Cubes and Cube Connected
Cycles for Wafer Scale I ion”, In Proc of the 1987
International Conference on Parallel Processing, August 17-21, 1987,
pages 479-482.

[9] C. E. Skinner and J. R. Asher, “Effects of storage contention on
system performance™, IBM Systems Journal, volume 8, number 4,
1969, pages 319-333.

{10} D. P. Bhandarkar and S. H. Fuller, “Markov Chain Models for
Analyzing Memory Interference in Multi Comp y

L3

In Proceedings of the 1st Annual Symposium on Computer Architecture,
December, 1973, pages 1-6.

(11] F.Baskett and A, J. Smith, “Intert in multip computer
systems with interieaved memory”, Communications of the ACM,
volume 19, number 6, June, 1976, pages 327-334.

{12] Trevor N. Mudge and H d B. Al-Sad “ M y Interference
Models with Variable Connection Time", [EEE Transactions
on Computers, volume C-33, number 11, November, 1984,

pages 1033-1038.
[13]) Motorola Schottky TTL Data, Motorola Inc., 1983,

{14] Paul L. Borrill, “MicroStandards Special Feature: A Comparison of
32-Bit Buses”, /EEE Micro, volume 5, number 6, December, 1985,
pages 71-79.

[15] Doug MacGregor and Jon Rubinstein, “A Performance Analysis
of MC68020-based Systems”, IEEE Micro, volume 5, number 6,
December, 1985, pages 50-70.

(16] Alan Jay Smith “Cache Evaluation and the Impact of Workload
Choice™, In The 12th Annual International Symposium on Computer
Architecture Conference Proceedings, June 17-19, 1985, pages 64-73.

[17] Alan Jay Smith, “Line (Block) Size Choice for CPU Cache
Memories™, IEEE Transactions on Computers, volume C-36, number 9,
September, 1987, pages 1063-1075.

107

[18] Balu Balakrishnan, “32-Bit System Buses — A Physical Layer
Comparison”, Computing, August 27, 1987, pages 18-19 and
September 10, 1987, pages 32-33.

[19] Donald C. Winsor and Trevor N. Mudge, “Crosspoint Cache
Architectures”, In Proceedings of the 1987 International Conference
on Parallel Processing, August 17-21, 1987, pages 266-269.

{20} Trevor N. Mudge, John P. Hayes, and Donald C. Winsor, “Multiple
Bus Architectures”, Computer, June, 1987, pages 42-48.

